Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.02.10.23285516

ABSTRACT

As the SARS-CoV-2 pandemic progressed, distinct variants emerged and dominated in England. These variants, Wildtype, Alpha, Delta, and Omicron were characterized by variations in transmissibility and severity. We used a robust mathematical model and Bayesian inference framework to analyse epidemiological surveillance data from England. We quantified the impact of non-pharmaceutical interventions (NPIs), therapeutics, and vaccination on virus transmission and severity. Each successive variant had a higher intrinsic transmissibility. Omicron (BA.1) had the highest basic reproduction number at 8.1 (95% credible interval (CrI) 6.8-9.3). Varying levels of NPIs were crucial in controlling virus transmission until population immunity accumulated. Immune escape properties of Omicron decreased effective levels of protection in the population by a third. Furthermore, in contrast to previous studies, we found Alpha had the highest basic infection fatality ratio (2.8%, 95% CrI 2.3-3.2), followed by Delta (2.0%, 95% CrI 1.5-2.4), Wildtype (1.2%, 95% CrI 1.0-1.3), and Omicron (0.6%, 95% CrI 0.4-0.8). Our findings highlight the importance of continued surveillance. Long-term strategies for monitoring and maintaining effective immunity against SARS-CoV-2 are critical to inform the role of NPIs to effectively manage future variants with potentially higher intrinsic transmissibility and severe outcomes.

2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.08.22278528

ABSTRACT

Background: The UK was the first country to start national COVID-19 vaccination programmes, initially administering doses 3-weeks apart. However, early evidence of high vaccine effectiveness after the first dose and the emergence of the Alpha variant prompted the UK to extend the interval between doses to 12-weeks. In this study, we quantify the impact of delaying the second vaccine dose on the epidemic in England. Methods: We used a previously described model of SARS-CoV-2 transmission and calibrated the model to English surveillance data including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data using a Bayesian evidence synthesis framework. We modelled and compared the epidemic trajectory assuming that vaccine doses were administered 3-weeks apart against the real vaccine roll-out schedule. We estimated and compared the resulting number of daily infections, hospital admissions, and deaths. A range of scenarios spanning a range of vaccine effectiveness and waning assumptions were investigated. Findings: We estimate that delaying the interval between the first and second COVID-19 vaccine doses from 3- to 12-weeks prevented an average 64,000 COVID-19 hospital admissions and 9,400 deaths between 8th December 2020 and 13th September 2021. Similarly, we estimate that the 3-week strategy would have resulted in more infections and deaths compared to the 12-week strategy. Across all sensitivity analyses the 3-week strategy resulted in a greater number of hospital admissions. Interpretation: England's delayed second dose vaccination strategy was informed by early real-world vaccine effectiveness data and a careful assessment of the trade-offs in the context of limited vaccine supplies in a growing epidemic. Our study shows that rapidly providing partial vaccine-induced protection to a larger proportion of the population was successful in reducing the burden of COVID-19 hospitalisations and deaths. There is benefit in carefully considering and adapting guidelines in light of new emerging evidence and the population in question. Funding: National Institute for Health Research, UK Medical Research Council, Jameel Institute, Wellcome Trust, and UK Foreign, Commonwealth and Development Office, National Health and Medical Research Council.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.17.21262164

ABSTRACT

BackgroundEnglands COVID-19 "roadmap out of lockdown" set out the timeline and conditions for the stepwise lifting of non-pharmaceutical interventions (NPIs) as vaccination roll-out continued. Here we assess the roadmap, the impact of the Delta variant, and potential future epidemic trajectories. MethodsWe extended a model of SARS-CoV-2 transmission to incorporate vaccination and multi-strain dynamics to explicitly capture the emergence of the Delta variant. We calibrated the model to English surveillance data using a Bayesian evidence synthesis framework, then modelled the potential trajectory of the epidemic for a range of different schedules for relaxing NPIs. FindingsThe roadmap was successful in offsetting the increased transmission resulting from lifting NPIs with increasing population immunity through vaccination. However due to the emergence of Delta, with an estimated transmission advantage of 73% (95%CrI: 68-79) over Alpha, fully lifting NPIs on 21 June 2021 as originally planned may have led to 3,400 (95%CrI: 1,300-4,400) peak daily hospital admissions under our central parameter scenario. Delaying until 19 July reduced peak hospitalisations by three-fold to 1,400 (95%CrI: 700-1,500) per day. There was substantial uncertainty in the epidemic trajectory, with particular sensitivity to estimates of vaccine effectiveness and the intrinsic transmissibility of Delta. InterpretationOur findings show that the risk of a large wave of COVID hospitalisations resulting from lifting NPIs can be substantially mitigated if the timing of NPI relaxation is carefully balanced against vaccination coverage. However, with Delta, it may not be possible to fully lift NPIs without a third wave of hospitalisations and deaths, even if vaccination coverage is high. Variants of concern, their transmissibility, vaccine uptake, and vaccine effectiveness must be carefully monitored as countries relax pandemic control measures. FundingNational Institute for Health Research, UK Medical Research Council, Wellcome Trust, UK Foreign, Commonwealth & Development Office. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSWe searched PubMed up to 23 July 2021 with no language restrictions using the search terms: (COVID-19 or SARS-CoV-2 or 2019-nCoV or "novel coronavirus") AND (vaccine or vaccination) AND ("non pharmaceutical interventions" OR "non-pharmaceutical interventions) AND (model*). We found nine studies that analysed the relaxation of controls with vaccination roll-out. However, none explicitly analysed real-world evidence balancing lifting of interventions, vaccination, and emergence of the Delta variant. Added value of this studyOur data synthesis approach combines real-world evidence from multiple data sources to retrospectively evaluate how relaxation of COVID-19 measures have been balanced with vaccination roll-out. We explicitly capture the emergence of the Delta variant, its transmissibility over Alpha, and quantify its impact on the roadmap. We show the benefits of maintaining NPIs whilst vaccine coverage continues to increase and capture key uncertainties in the epidemic trajectory after NPIs are lifted. Implications of all the available evidenceOur study shows that lifting interventions must be balanced carefully and cautiously with vaccine roll-out. In the presence of a new, highly transmissible variant, vaccination alone may not be enough to control COVID-19. Careful monitoring of vaccine uptake, effectiveness, variants, and changes in contact patterns as restrictions are lifted will be critical in any exit strategy.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.01.21250877

ABSTRACT

By January 2020, the COVID-19 illness has caused over two million deaths. Countries have restricted disease spread through non-pharmaceutical interventions (e.g., social distancing). More severe 'lockdowns' have also been required. Although lockdowns keep people safer from the virus, they substantially disrupt economies and individual well-being. Fortunately, vaccines are becoming available. Yet, vaccination programs may take several months to implement, requiring further time for individuals to develop immunity following inoculation. To prevent health services being overwhelmed it may be necessary to implement further lockdowns in conjunction with vaccination. Here, we investigate optimal approaches for vaccination under varying lockdown lengths and/or severities to prevent COVID-19-related deaths exceeding critical thresholds. We find increases in vaccination rate cause a disproportionately larger decrease in lockdowns: with vaccination, severe lockdowns can reduce infections by up to 89%. Notably, we include demographics, modelling three groups: vulnerable, front-line workers, and non-vulnerable. We investigate the sequence of vaccination. One counter-intuitive finding is that even though the vulnerable group is high risk, demographically, this is a small group (per person, vaccination occurs more slowly) so vaccinating this group first achieves limited gains in overall disease control. Better disease control occurs by vaccinating the non-vulnerable group with longer and/or more severe lockdowns


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.23.20217570

ABSTRACT

Background When a new pathogen emerges, consistent case reporting is critical for public health surveillance. Tracking cases geographically and over time is key for understanding the spread of an infectious disease and how to effectively design interventions to contain and mitigate an epidemic. In this paper we describe the reporting systems on COVID-19 in Southeast Asia during the first wave in 2020, and highlight the impact of specific reporting methods. Methods We reviewed key epidemiological variables from various sources including a regionally comprehensive dataset, national trackers, dashboards, and case bulletins for 11 countries during the first wave of the epidemic in Southeast Asia. We recorded timelines of shifts in epidemiological reporting systems. We further described the differences in how epidemiological data are reported across countries and timepoints, and the accessibility of epidemiological data. Findings Our findings suggest that countries in Southeast Asia generally reported precise and detailed epidemiological data during the first wave of the COVID-19 pandemic. However, changes in reporting were frequent and varied across data and countries. Changes in reporting rarely occurred for demographic data such as age and sex, while reporting shifts for geographic and temporal data were frequent. We also found that most countries provided COVID-19 individual-level data daily using HTML and PDF, necessitating scraping and extraction before data could be used in analyses. Interpretation Countries have different reporting systems and different capacities for maintaining consistent reporting of epidemiological data. As the pandemic progresses, governments may also change their priorities in data sharing. Our study thus highlights the importance of more nuanced analyses of epidemiological data of COVID-19 within and across countries because of the frequent shifts in reporting. Further, most countries provide data on a daily basis but not always in a readily usable format. As governments continue to respond to the impacts of COVID-19 on health and the economy, data sharing also needs to be prioritised given its foundational role in policymaking, and the implementation and evaluation of interventions. Funding The work was supported through an Engineering and Physical Sciences Research Council (EPSRC) (https://epsrc.ukri.org/) Systems Biology studentship award (EP/G03706X/1) to TR. This project was also supported in part by the Oxford Martin School. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Subject(s)
COVID-19 , Communicable Diseases
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.29.20084517

ABSTRACT

Countries around the world are in a state of lockdown to help limit the spread of SARS-CoV-2. However, as the number of new daily confirmed cases begins to decrease, governments must decide how to release their populations from quarantine as efficiently as possible without overwhelming their health services. We applied an optimal control framework to an adapted Susceptible-Exposure-Infection-Recovery (SEIR) model framework to investigate the efficacy of two potential lockdown release strategies, focusing on the UK population as a test case. To limit recurrent spread, we find that ending quarantine for the entire population simultaneously is a high-risk strategy, and that a gradual re-integration approach would be more reliable. Furthermore, to increase the number of people that can be first released, lockdown should not be ended until the number of new daily confirmed cases reaches a sufficiently low threshold. We model a gradual release strategy by allowing different fractions of those in lockdown to re-enter the working non-quarantined population. Mathematical optimisation methods, combined with our adapted SEIR model, determine how to maximise those working while preventing the health service from being overwhelmed. The optimal strategy is broadly found to be to release approximately half the population two-to-four weeks from the end of an initial infection peak, then wait another three-to-four months to allow for a second peak before releasing everyone else. We also modelled an ''on-off'' strategy, of releasing everyone, but re-establishing lockdown if infections become too high. We conclude that the worst-case scenario of a gradual release is more manageable than the worst-case scenario of an on-off strategy, and caution against lockdown-release strategies based on a threshold-dependent on-off mechanism. The two quantities most critical in determining the optimal solution are transmission rate and the recovery rate, where the latter is defined as the fraction of infected people in any given day that then become classed as recovered. We suggest that the accurate identification of these values is of particular importance to the ongoing monitoring of the pandemic.


Subject(s)
COVID-19 , Hallucinations
SELECTION OF CITATIONS
SEARCH DETAIL